The metamorphic evolution of mafic rocks in the Tugela Terrane, Natal Belt, South Africa

A. Bisnath
Council for Geoscience, Pietermaritzburg, South Africa
Present Address: Kai Batla Minerals Industry Consultants, P.O.Box 41955, Craighall, 2024, Gauteng, South Africa
e-mail: abisnath@kaibatla.co.za

S. McCourt
School of Geological Sciences, University of KwaZulu-Natal (Westville Campus) Durban, South Africa.
e-mail: mccourts@ukzn.ac.za

H.E Frimmel
Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa
Present Address: Division for Geodynamics and Geomaterials Research, Institute of Geography, University of Würzburg, Am Hubland, D-97074, Würzburg
e-mail: hartwig.frimmel@uni-wuerzburg.de

S.B.N. Buthelezi
School of Geological Sciences, University of KwaZulu-Natal (Westville Campus) Durban, South Africa.
Present Address: Kai Batla Minerals Industry Consultants, P.O.Box 41955, Craighall, 2024, Gauteng, South Africa
e-mail: sbuthelezi@kaibatla.co.za

© 2008 December Geological Society of South Africa

ABSTRACT
New petrological and mineral chemical data indicate a clockwise P-T path for medium- to high-grade metamorphic mafic rocks in different thrust sheets of the Tugela Terrane within the Mesoproterozoic Natal Belt in KwaZulu-Natal (eastern South Africa). Three metamorphic stages are distinguished: (i) an early upper amphibolite- to lower granulite-facies metamorphic event (M₁) is indicated by rare relics of clinopyroxene; (ii) mineral chemical and textural equilibration during M₂ at calculated pressure-temperature conditions of 4.5 to 6 kbar and 693 to 750°C; and (iii) partial diffusional resetting of mineral compositions during subsequent uplift and exhumation (M₃) under lower amphibolite- to greenschist-facies conditions. No major differences were noted in the tectono-thermal regimes at which each of the respective thrust sheets were deformed suggesting that the Tugela Terrane was a homogenous package and experienced uniform P-T conditions. The new data acquired in this study contribute to an improvement in the ongoing development of a tectono-thermal and geodynamic model for the Natal Belt.

Introduction
KwaZulu-Natal in eastern South Africa contains a Mesoproterozoic orogenic belt that provides useful information for the understanding of both the amalgamation and fragmentation of supercontinents towards the end of the Mesoproterozoic at c. 1.2 to 1.0 Ga. The Mesoproterozoic Natal Belt of southern Africa lies adjacent to the southeastern margin of the Kaapvaal Craton and is truncated to the east against the Indian Ocean margin of the African continent. The Natal Belt is divided, from north to south, into the Tugela, Mzumbe and Margate Terranes (Thomas, 1989; Johnston et al., 2003; Figure 1). The Mzumbe and Margate Terranes are characterised by voluminous 1.2 to 1.0 Ga granitoid gneisses that have been interpreted as deeply eroded magmatic arcs (Thomas, 1989; Thomas et al., 1993; 1999). Published tectonic models assume that the Mzumbe and Margate Terranes are magmatic arcs that developed in response to Mesoproterozoic ocean basin closure south of the Kaapvaal Craton with subduction away from the craton (Matthews, 1972; 1981; Jacobs et al., 1993; Jacobs and Thomas, 1994; Thomas et al., 1994).

In contrast to the Margate and Mzumbe Terranes, the Tugela Terrane consists of a heterogeneous assemblage of amphibolite-facies mafic and felsic orthogneisses, layered mafic and ultramafic complexes and metasedimentary rocks. The ultramafic rocks present in the Tugela Terrane and its intermediate position between the Kaapvaal Craton and southern arc terranes prompted Matthews (1972; 1981) to suggest that the Tugela Terrane was part of a Mesoproterozoic ophiolite that was obducted onto the Kaapvaal Craton during Mesoproterozoic orogeny. Recent mapping (Bisnath, 2000; Johnston et al., 2003) and geochemical studies (Arima et al., 2001) have shown that the Tugela Terrane consists of several thrust sheets each of which has a distinct tectono-magmatic signature. These authors interpreted the Tugela Terrane as an accretionary complex consisting of rocks formed in an intra-oceanic island arc and oceanic island settings that subsequently accreted to the continental margin of the Kaapvaal Craton.

© 2008 December Geological Society of South Africa

ABSTRACT
New petrological and mineral chemical data indicate a clockwise P-T path for medium- to high-grade metamorphic mafic rocks in different thrust sheets of the Tugela Terrane within the Mesoproterozoic Natal Belt in KwaZulu-Natal (eastern South Africa). Three metamorphic stages are distinguished: (i) an early upper amphibolite- to lower granulite-facies metamorphic event (M₁) is indicated by rare relics of clinopyroxene; (ii) mineral chemical and textural equilibration during M₂ at calculated pressure-temperature conditions of 4.5 to 6 kbar and 693 to 750°C; and (iii) partial diffusional resetting of mineral compositions during subsequent uplift and exhumation (M₃) under lower amphibolite- to greenschist-facies conditions. No major differences were noted in the tectono-thermal regimes at which each of the respective thrust sheets were deformed suggesting that the Tugela Terrane was a homogenous package and experienced uniform P-T conditions. The new data acquired in this study contribute to an improvement in the ongoing development of a tectono-thermal and geodynamic model for the Natal Belt.

Introduction
KwaZulu-Natal in eastern South Africa contains a Mesoproterozoic orogenic belt that provides useful information for the understanding of both the amalgamation and fragmentation of supercontinents towards the end of the Mesoproterozoic at c. 1.2 to 1.0 Ga. The Mesoproterozoic Natal Belt of southern Africa lies adjacent to the southeastern margin of the Kaapvaal Craton and is truncated to the east against the Indian Ocean margin of the African continent. The Natal Belt is divided, from north to south, into the Tugela, Mzumbe and Margate Terranes (Thomas, 1989; Johnston et al., 2003; Figure 1). The Mzumbe and Margate Terranes are characterised by voluminous 1.2 to 1.0 Ga granitoid gneisses that have been interpreted as deeply eroded magmatic arcs (Thomas, 1989; Thomas et al., 1993; 1999). Published tectonic models assume that the Mzumbe and Margate Terranes are magmatic arcs that developed in response to Mesoproterozoic ocean basin closure south of the Kaapvaal Craton with subduction away from the craton (Matthews, 1972; 1981; Jacobs et al., 1993; Jacobs and Thomas, 1994; Thomas et al., 1994).

In contrast to the Margate and Mzumbe Terranes, the Tugela Terrane consists of a heterogeneous assemblage of amphibolite-facies mafic and felsic orthogneisses, layered mafic and ultramafic complexes and metasedimentary rocks. The ultramafic rocks present in the Tugela Terrane and its intermediate position between the Kaapvaal Craton and southern arc terranes prompted Matthews (1972; 1981) to suggest that the Tugela Terrane was part of a Mesoproterozoic ophiolite that was obducted onto the Kaapvaal Craton during Mesoproterozoic orogeny. Recent mapping (Bisnath, 2000; Johnston et al., 2003) and geochemical studies (Arima et al., 2001) have shown that the Tugela Terrane consists of several thrust sheets each of which has a distinct tectono-magmatic signature. These authors interpreted the Tugela Terrane as an accretionary complex consisting of rocks formed in an intra-oceanic island arc and oceanic island settings that subsequently accreted to the continental margin of the Kaapvaal Craton.

© 2008 December Geological Society of South Africa

ABSTRACT
New petrological and mineral chemical data indicate a clockwise P-T path for medium- to high-grade metamorphic mafic rocks in different thrust sheets of the Tugela Terrane within the Mesoproterozoic Natal Belt in KwaZulu-Natal (eastern South Africa). Three metamorphic stages are distinguished: (i) an early upper amphibolite- to lower granulite-facies metamorphic event (M₁) is indicated by rare relics of clinopyroxene; (ii) mineral chemical and textural equilibration during M₂ at calculated pressure-temperature conditions of 4.5 to 6 kbar and 693 to 750°C; and (iii) partial diffusional resetting of mineral compositions during subsequent uplift and exhumation (M₃) under lower amphibolite- to greenschist-facies conditions. No major differences were noted in the tectono-thermal regimes at which each of the respective thrust sheets were deformed suggesting that the Tugela Terrane was a homogenous package and experienced uniform P-T conditions. The new data acquired in this study contribute to an improvement in the ongoing development of a tectono-thermal and geodynamic model for the Natal Belt.

Introduction
KwaZulu-Natal in eastern South Africa contains a Mesoproterozoic orogenic belt that provides useful information for the understanding of both the amalgamation and fragmentation of supercontinents towards the end of the Mesoproterozoic at c. 1.2 to 1.0 Ga. The Mesoproterozoic Natal Belt of southern Africa lies adjacent to the southeastern margin of the Kaapvaal Craton and is truncated to the east against the Indian Ocean margin of the African continent. The Natal Belt is divided, from north to south, into the Tugela, Mzumbe and Margate Terranes (Thomas, 1989; Johnston et al., 2003; Figure 1). The Mzumbe and Margate Terranes are characterised by voluminous 1.2 to 1.0 Ga granitoid gneisses that have been interpreted as deeply eroded magmatic arcs (Thomas, 1989; Thomas et al., 1993; 1999). Published tectonic models assume that the Mzumbe and Margate Terranes are magmatic arcs that developed in response to Mesoproterozoic ocean basin closure south of the Kaapvaal Craton with subduction away from the craton (Matthews, 1972; 1981; Jacobs et al., 1993; Jacobs and Thomas, 1994; Thomas et al., 1994).

In contrast to the Margate and Mzumbe Terranes, the Tugela Terrane consists of a heterogeneous assemblage of amphibolite-facies mafic and felsic orthogneisses, layered mafic and ultramafic complexes and metasedimentary rocks. The ultramafic rocks present in the Tugela Terrane and its intermediate position between the Kaapvaal Craton and southern arc terranes prompted Matthews (1972; 1981) to suggest that the Tugela Terrane was part of a Mesoproterozoic ophiolite that was obducted onto the Kaapvaal Craton during Mesoproterozoic orogeny. Recent mapping (Bisnath, 2000; Johnston et al., 2003) and geochemical studies (Arima et al., 2001) have shown that the Tugela Terrane consists of several thrust sheets each of which has a distinct tectono-magmatic signature. These authors interpreted the Tugela Terrane as an accretionary complex consisting of rocks formed in an intra-oceanic island arc and oceanic island settings that subsequently accreted to the continental margin of the Kaapvaal Craton.
Figure 1. Simplified geological map of the Natal belt showing the distribution and relative positions of the Margate, Mzumbe and Tugela terranes (after Thomas et al., 1993) and the principal localities mentioned in the text. For reference KC refers to Kaapvaal craton and NFT to Natal thrust front. On the insert, simplified map to illustrate the principal elements in the tectonic framework of southern Africa. For reference MB indicates the Palaeoproterozoic Magondi belt in Zimbabwe and CKB indicates the Mesoproterozoic Choma-Kalomo block in Zambia. The block of Archaean crust comprising, from south to north, the Kaapvaal craton, Limpopo belt and Zimbabwe craton.
Figure 2. Simplified geologic map of the study area (after Matthews and Charlesworth, 1981) the location of which is indicated in Figure 1. Sample points (*) are also shown on the map.
In this contribution, the tectono-thermal regimes in which the rocks defining the thrust sheets of the Tugela Terrane were deformed and metamorphosed are assessed. In order to resolve the complex tectono-thermal history of the area, detailed petrographic and geothermobarometric studies were carried out on mafic rocks to generate, in conjunction with published geochronological data (Bisnath, 2000; Johnston et al., 2001; McCourt et al., 2006), a coherent pressure-temperature (P-T) path and an improved geodynamic model for this part of the Natal Belt.

Geology of the Tugela Terrane

Matthews (1981) defined the Tugela Terrane as an ophiolitic, west-plunging thrust stack that consists of four thrust sheets or nappes named, from east to west and bottom to top, the Nkomo, Madidima, Mandleni and Tugela Nappes (Figure 2). He interpreted the

Figure 3 (a) Photomicrograph of discordant relationship between S_1 and S_2 foliations. Note the angle of approximately 45° between the inclusions trails in garnet (S_1) and the biotite laths (S_2); (b) Photomicrograph of garnet with quartz, feldspar and biotite inclusions truncated by an inclusion free rim; (c) The dominant S_2 planar fabric defined by compositional banding; (d) Scar folds related to boudinage of S_2; (e) Fold interference pattern (Type 3) due to two sets of coaxial F_3 and F_4 folds deforming S_2; (f) Field photo of F_3 folds deforming the dominate S_2 foliation.
dismembered ultramafic lenses and associated talc schist distributed throughout the Tugela Terrane as defining the contacts between thrust sheets. Matthews (1972; 1981) regarded the rocks of the Tugela thrust sheet as the most oceanic in character and thus interpreted them as the most allochthonous. The rocks defining the Nkomo thrust sheet were considered to be parautochthonous and thought to be linked to the margin of the Kaapvaal Craton. In the Nkomo and Madidima thrust sheets, quartzo-feldspathic gneiss is the dominant lithology with subordinate amounts of metasedimentary rocks and amphibolite, whereas the Mandleni and Tugela thrust sheets consist of bimodal meta-igneous rocks.

Tugela thrust sheet

The Tugela thrust sheet (TTS) is dominated by the Manyane amphibolite, comprising amphibolite, amphibole gneiss and tremolite-chlorite schist, and the Kotongweni meta-tonalite (Harmer, 1979). The latter is a homogeneous tonalitic garnet hornblende gneiss that is intrusive into the Manyane amphibolite (Johnston et al., 2003; McCourt et al., 2006). Minor amounts of felsic gneiss, layers of magnetite quartzite and dolomite are sparsely interfoliated with the mafic rocks. Arima et al. (2001) demonstrated that the Manyani amphibolites were derived from low-K tholeiitic basaltic rocks and the Kotongweni tonalite is an extremely depleted M-type granitoid, with low abundances of K, Rb, rare earth elements (REE’s) and large ion lithophile elements (LILE), similar to rocks forming in the present day Izu-Bonin arc. Arima et al. (2001) therefore interpreted the Kotongweni tonalite and the Manyani amphibolite as the volcanic and plutonic components of a Mesoproterozoic ocean arc system. Within the TTS, four plutonic bodies have been identified. These are the ultramafic/mafic Tugela Rand and Macala complexes, the Mkondene diorite and the Dimane granite.

McCourt et al. (2006) reported that the medium-to coarse-grained Mkondene meta-diorite is also intrusive into the Manyane amphibolite. The typical mineralogy is biotite, hornblende, plagioclase and quartz. Orthopyroxene is locally present. Regional mapping indicates that with increasing strain and thus foliation intensity, the orthopyroxene-bearing diorite grades into biotite-hornblende gneiss (Harmer, 1979).

The Tugela Rand Complex (Wilson, 1990) comprises an association of layered mafic and ultramafic rocks that are characterised by well preserved primary magmatic structures. An informal subdivision of the intrusive body

<table>
<thead>
<tr>
<th>Thrust Sheet</th>
<th>Amphibolitic Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tugela</td>
<td>Manyane Amphibolite</td>
<td>Medium to coarse grained, green coloured rock. Commonly folded together with feldspathic gneiss hbl+pl+qtz+bt+zr+opaque Intruded by Mkhondeni Diorite and Tugela Rand Complex</td>
</tr>
<tr>
<td>Mandleni</td>
<td>Wosi Amphibolite</td>
<td>Medium to coarse grained, dark green rock. Folded with aplitic dykes and feldspathic gneiss hbl+pl+qtz+gr+t+zr+bt+zr+opaque Intruded by Mambulu Complex</td>
</tr>
<tr>
<td>Madidima</td>
<td>Undifferentiated Amphibolite</td>
<td>Medium to coarse grained dark green rock. Intruded by numerous granitoid dykes</td>
</tr>
<tr>
<td>Nkomo</td>
<td>Khomo Amphibolite</td>
<td>Dominantly coarse grained dark green rock. hbl+bt hbl+pl+qtz+opaque Folded with feldspathic gneiss and aplitic dykes</td>
</tr>
</tbody>
</table>
by Wilson (1990) recognises seven lithological zones with bronzitite at the base and troctolite at the top. Serpentinised wehrlite and gabbroids are the most common rock types. The Tugela Rand Complex is intrusive into both the Manyane amphibolites and the Mkondene meta-diorite and is, in turn, intruded by the Dimane granite (Wilson, 1990). It has been suggested that the complex may represent the roots of an oceanic island (see McCourt et al., 2006).

McCourt et al. (2006) also reported that the Dimane granite outcrops along the western margin of the Tugela Rand Complex, where it is discordant to gabbro, pyroxenite and serpentinite (Harmer, 1979). The granite is medium-grained, equigranular and composed of...
quartz, microcline and minor biotite (Harmer, 1979). Although the granite is typically massive, a non-penetrative foliation defined by biotite is locally developed. Harmer (1979) noted the common occurrence of both veined and massive amphibolite xenoliths in the Dimane granite.

Mandleni thrust sheet
The Mandleni thrust sheet (MTS) is structurally below the TTS and is underlain by the Dondwana gneiss unit comprising both amphibolitic and leucocratic feldspathic gneiss with the mafic component referred to as the Wozi amphibolite. From geochemical data, Johnston gneiss with the mafic component comprising both amphibolitic and leucocratic feldspathic the TTS and is underlain by the Dondwana gneiss unit. The Mandleni thrust sheet (MTS) is structurally below occurrence of both veined and massive amphibolite developed. Harmer (1979) noted the common penetrative foliation defined by biotite is locally Although the granite is typically massive, a non-quartz, microcline and minor biotite (Harmer, 1979).

Madidima thrust sheet
The Madidima thrust sheet (MDTS) is dominated by the Dulumbe paragneiss (Johnston et al., 2001), which is a thick succession of homogeneous biotite gneiss. The Dulumbe paragneiss forms the structurally highest portion of the MDTS and grades downwards into a heterogeneous succession of garnet-biotite, garnet-biotite-sillimanite and muscovite-biotite schists, calc-silicate gneiss with minor amounts of amphibolite, graphite schist and marble. This structurally lower unit is referred to as the Gazeni metasedimentary sequence (Matthews and Charlesworth, 1981; Binsath, 2000).

Nkome thrust sheet (NTS)
The Nkome thrust sheet (NTS) is the structurally lowest thrust sheet and is overlain by the MDTS. This package consists of two mappable units, i.e., the Halambu granitoid gneiss unit and the Khomo amphibolite unit (Smalley, 1980). The Halambu granitoid gneiss unit is a uniform grey, medium- to coarse-grained, foliated rock of granodioritic to tonalitic composition and it is characterised by an abundance of amphibolitic xenoliths (Smalley, 1980). The Khomo amphibolite comprises interbanded amphibolitic gneisses, schists and aplite dykes. The regional foliation of the Khomo amphibolite unit is concordant with that of the Halambu granitoid gneiss unit. The Khomo amphibolites are fine- to medium-grained, compositionally layered and contain lenses and layers of quartzo-feldspathic material giving the rock a streaky appearance.

Structural Geology
No primary structures were observed in the gneissic rocks of the Tugela Terrane and it is concluded that the penetrative deformation and recrystallisation during syn-kinematic metamorphism has transposed all primary features. We recognise four planar tectonic fabrics (S₁-S₄) and one linear fabric. The oldest fabric (S₁) is poorly preserved and has largely been overprinted by subsequent deformation. At outcrop scale, rare detached isoclinal intrafolial folds that deformed compositional layering can be observed (Johnston et al., 2003). The S₁ fabric has also been recognised as an internal fabric in garnet and either truncates against garnet margins (Figure 3A) or against an inclusion-free marginal zone within the garnet porphyroblasts (Figure 3B).

The dominant S₂ planar fabric, a penetrative axial planar cleavage, is parallel to lithological contacts and is defined by compositional banding (Figure 3C) and by the alignment of coarse mineral grains throughout the Tugela Terrane. Isoclinal intrafolial folds of S₂ indicate that S₂ developed in response to isoclinal folding and transposition of older contacts (D₂; Johnston et al., 2001). On a regional scale S₂ is deformed by open to tight, northeast-verging F₃ folds with fold axes that trend 120-300° and very open F₄ folds. Locally the S₂ foliation is deformed into sharply defined wave-like structures. These are scar-folds related to the development of boudinage in slightly more competent layers (Figure 3D). Planar fabrics and folds attributable to the multiple deformation events are recognisable at map scale (see Binsath, 2000; Johnston et al., 2003) and at outcrop scale where they result in spectacular Type-3 interference patterns (after Ramsay, 1967; Figure 3E). The presence of northeast-vergent F₃ folds, map-scale nappes, rotated boudins and extensional shear bands (Figure 3F) suggests that D₃ was characterised by ductile deformation during top-to-north shearing (Johnston et al., 2001).

The D₃ event is characterised by the folding and faulting of the S₂ fabric (Figure 4). The F₃ folds are generally tight, have thickened hinges, and are asymmetric verging to the northeast. Syn-kinematic lower amphibolite-facies metamorphism resulted in retrograde overprinting of the S₂ fabric. This S₂ fabric is orientated at a high angle to the S₂ fabric in F₃ fold hinges, whereas the S₂ parallels the S₂ in the long limbs of the F₃ folds. Locally the lower limbs and cores of these folds are cut by sub-horizontal to southwest dipping, northeast verging thrust faults. These faults are parallel to the axial surface of F₃ folds.

Metamorphic History
Felsic orthogneiss and semipelitic paragneiss from the MDTS are dominated by feldspar, quartz, biotite, garnet and locally hornblende. The pelitic gneiss of the MDTS consists of garnet, biotite, feldspar, quartz and sillimanite. These mineral assemblages provide limited constraints on the pressure and temperature conditions.
during metamorphism. More useful in this regard are the amphibolitic rocks, which consist of garnet, plagioclase, hornblende, ilmenite and biotite with occasional relics of clinopyroxene. Such mafic rocks are preserved in all four thrust sheets, with minor variations in composition (Table 1). As these rock are considered to be extrusive (Matthews, 1972; 1981; Arima et al., 2001; Johnston et al., 2003) it is implicit that the protolith experienced the entire metamorphic history recorded in these amphibolitic rocks. Given the degree of metamorphism

Table 2 Representative electron microprobe results for hornblende-plagioclase pairs.

<table>
<thead>
<tr>
<th>Sample #</th>
<th>SB01</th>
<th>SB06</th>
<th>SB24</th>
<th>SB17</th>
<th>SB07A</th>
<th>SB31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28°58.18´S</td>
<td>28°57.036´S</td>
<td>28°46.60´S</td>
<td>28°53.175´S</td>
<td>28°54.07´E</td>
<td>28°53.754´S</td>
<td>28°53.175´S</td>
</tr>
<tr>
<td>Grain #</td>
<td>Hbl 1</td>
<td>Hbl 17</td>
<td>Hbl 17</td>
<td>Hbl 22</td>
<td>Hbl 1</td>
<td>Hbl 1</td>
</tr>
<tr>
<td>SiO2</td>
<td>44.26</td>
<td>43.35</td>
<td>44.41</td>
<td>44.76</td>
<td>47.99</td>
<td>43.18</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.81</td>
<td>0.85</td>
<td>1.18</td>
<td>1.06</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.0</td>
<td>0.06</td>
</tr>
<tr>
<td>FeO</td>
<td>15.84</td>
<td>16.26</td>
<td>16.51</td>
<td>14.40</td>
<td>15.38</td>
<td>14.84</td>
</tr>
<tr>
<td>MnO</td>
<td>0.29</td>
<td>0.29</td>
<td>0.17</td>
<td>0.08</td>
<td>0.21</td>
<td>0.30</td>
</tr>
<tr>
<td>Na2O</td>
<td>1.17</td>
<td>1.31</td>
<td>1.49</td>
<td>1.18</td>
<td>1.31</td>
<td>1.26</td>
</tr>
<tr>
<td>K2O</td>
<td>0.33</td>
<td>0.36</td>
<td>0.45</td>
<td>0.37</td>
<td>0.26</td>
<td>0.21</td>
</tr>
<tr>
<td>Total</td>
<td>97.98</td>
<td>98.36</td>
<td>97.64</td>
<td>97.86</td>
<td>98.37</td>
<td>97.46</td>
</tr>
<tr>
<td>Grain #</td>
<td>Plag 1</td>
<td>Plag 17</td>
<td>Plag 17</td>
<td>Plag 22</td>
<td>Plag 1</td>
<td>Plag 1</td>
</tr>
<tr>
<td>SiO2</td>
<td>57.07</td>
<td>57.24</td>
<td>54.77</td>
<td>57.17</td>
<td>60.14</td>
<td>55.21</td>
</tr>
<tr>
<td>FeO</td>
<td>0.09</td>
<td>0.16</td>
<td>3.08</td>
<td>0.18</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>CaO</td>
<td>8.12</td>
<td>8.39</td>
<td>8.77</td>
<td>8.54</td>
<td>6.31</td>
<td>9.79</td>
</tr>
<tr>
<td>Na2O</td>
<td>9.67</td>
<td>7.45</td>
<td>5.54</td>
<td>7.28</td>
<td>7.99</td>
<td>5.98</td>
</tr>
<tr>
<td>K2O</td>
<td>0.00</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>0.07</td>
<td>0.09</td>
</tr>
<tr>
<td>MgO</td>
<td>0.07</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td>97.61</td>
<td>98.18</td>
<td>98.18</td>
<td>98.10</td>
<td>97.87</td>
<td>97.97</td>
</tr>
</tbody>
</table>

Formula based on 23 oxygen for hornblende and 8 oxygen for plagioclase. All Fe reported as FeO
and recrystallisation, any sequence of metamorphic events prior to the emplacement of the mafic rocks is probably no longer preserved. The amphibolite and amphibolitic gneiss are, therefore, the most suitable rock types for reconstructing the P-T conditions experienced by the Tugela Terrane. Samples were collected from each thrust sheet in order to compare and contrast the peak metamorphic conditions and mineral assemblages (Table 1) preserved in the mafic rocks and thereby establish whether the peak metamorphic conditions for each of the thrust sheets were the same.

Mineral Chemistry

Seven amphibolite samples representing the range of pre-tectonic amphibolites from the different thrust sheets in the Tugela Terrane were selected for mineral chemical analysis. Mineral chemical data were acquired by conventional microprobe analyses using a JEOL 733 electron probe at the Council for Geoscience, South Africa. The analyses were performed using an accelerating voltage of 15 kV, a beam current of 30 and 40 nA and an analysing spot size of 2 to 5 micrometer. Data reduction was carried out by an on-line Fortran programme supplied by JEOL (FZAFOC), which uses the absorption correction of Philibert (1963) and Heinrich (1968), the atomic number correction of Duncumb and Reed (1968) and the fluorescence correction of Reed (1965). A range of internationally certified standards were employed. The counting time at the element peak positions was 10 seconds and 5 seconds at two symmetrical background positions with a lower detection limit of 0.05%. Mineral abbreviations used are from Kretz (1983). All Fe is expressed as FeO unless otherwise stated.

<table>
<thead>
<tr>
<th>Sample #:</th>
<th>SB06</th>
<th>Location</th>
<th>28°57.036'S; 31°02.330'E</th>
<th>Grt 1</th>
<th>Grt 2</th>
<th>Grt 3</th>
<th>Grt 4</th>
<th>28°50.380'S; 31°03.830'E</th>
<th>Grt 5</th>
<th>Grt 13</th>
<th>Grt 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>37.48</td>
<td>37.52</td>
<td>37.89</td>
<td>38.16</td>
<td>37.62</td>
<td>37.52</td>
<td>37.66</td>
<td>36.60</td>
<td>36.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.03</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>27.52</td>
<td>25.96</td>
<td>27.95</td>
<td>27.75</td>
<td>30.45</td>
<td>30.68</td>
<td>29.91</td>
<td>30.34</td>
<td>30.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.68</td>
<td>0.88</td>
<td>0.64</td>
<td>0.48</td>
<td>2.01</td>
<td>1.90</td>
<td>2.97</td>
<td>2.24</td>
<td>2.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>4.07</td>
<td>3.47</td>
<td>4.49</td>
<td>5.09</td>
<td>4.18</td>
<td>4.47</td>
<td>3.13</td>
<td>4.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>8.57</td>
<td>9.84</td>
<td>8.20</td>
<td>7.92</td>
<td>5.30</td>
<td>4.76</td>
<td>5.50</td>
<td>4.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>99.37</td>
<td>98.92</td>
<td>100.43</td>
<td>100.90</td>
<td>100.78</td>
<td>100.21</td>
<td>100.38</td>
<td>99.08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Formula based on 12 for garnet. All Fe reported as Fe₃O₄.

Mineral analyses for two samples were determined using a Leica 440 Stereoscan scanning electron microscope (SEM), equipped with an INCA (OXFORD) energy dispersive system (EDS), which controls the analytical capacity of the instrument at the Council for Geoscience. With this instrument it is possible to acquire secondary, backscattered and cathodoluminescence electron images, X-ray EDS microanalysis and X-ray element maps. All specimens were polished and coated with carbon to provide a conductive highly polished surface for optimum imaging and X-ray microanalysis. Mineral chemistry was determined by means of spot analyses with the EDS. Backscatter imaging, element mapping and EDS analysis were done at a probe current of 2 nA, accelerating voltage 20 kV and counting time was set at 100 s. The default reference standards as supplied by Oxford’s INCA software as well as own standards were used.
Amphibolites

A variety of amphibolites were observed in the field. The rocks generally appear dark green to black and are well foliated resulting in a laminated/banded surface appearance. Primary mineral assemblages were largely obliterated as a result of metamorphism and deformation. Apart from relics of diopside, the occasional presence of brown hornblende grains, perthitic potassium feldspar porphyroclasts and the replacement of biotite by potassium feldspar, the oldest preserved mineral assemblage is a re-equilibrated mineral assemblage that defines the S2 fabric in the amphibolites. It consists of hornblende + plagioclase + quartz ± garnet ± biotite ± ilmenite. Secondary epidote,

Figure 6. Amphibole classification for samples SB07A, SB12, SB24, SB17, SB31, SB06, SB01 according to the classification scheme of Leake et al. (1987).
Actinolite and sericite are ascribed to a retrograde overprint. Four varieties of amphibolites are distinguished:

1. garnet amphibolite;
2. epidote amphibolite;
3. biotite amphibolite; and
4. amphibolite.

The garnet amphibolite is characterised by red intensely deformed garnet porphyroblasts, 2 to 5 mm in diameter, that are interpreted as products of the unbalanced reaction:

$$\text{chlorite} + \text{biotite} \rightarrow \text{garnet} + \text{quartz} + \text{H}_2\text{O} \ (M_2)$$ \hspace{1cm} (1).

Figure 7. Plagioclase compositions in mafic meta-igneous rocks.

Figure 8. Representative compositional zoning profiles across individual garnet grains from sample SB06 and SB12.
Plagioclase and quartz leucosomes form coronas around the garnet porphyroblasts from which decompression melting (Johnston et al., 2001; Figure 5A) via the reaction:

\[
\text{garnet} + \text{amphibole (M}_2) \rightarrow \text{garnet} + \text{melt (quartz + plagioclase)} + H_2O (M}_3)
\]

is inferred. The garnet grains are typically anhedral, deformed and commonly replaced by elongate brown biotite, altered plagioclase (partly altered to sericite) and quartz along cracks. These minerals also occur as inclusions within the garnet porphyroblasts, giving rise to a poikiloblastic texture. Plagioclase exhibits wedge-shaped and multiple albite twins and radiating extinction (Figure 5A), while elongate quartz grains (Figure 5B) have undulose extinction. We interpret these features as products of either D3 or D4.

Sample SB06 contains garnets which are enveloped by a matrix of syn-kinematic, fabric-defining hornblende, plagioclase and quartz. The hornblende laths are typically blue-green, fragmented, contain plagioclase and quartz inclusions and range in length from 1 to 1.5 mm. Sample SB12 contains relatively larger and cleaner (less inclusions and less altered) hornblende laths. In this sample biotite partially replaced hornblende according to the following breakdown reaction:

\[
\text{Ca-amphibole (M}_2) \rightarrow \text{biotite} + H_2O (M}_3)
\]

The epidote amphibolite is characterised by anhedral, light green epidote grains (Figure 5C) and symplectic epidote-quartz intergrowths interpreted to be the product of the breakdown of hornblende. In one sample (SB20) symplectic epidote and quartz forms coronas around plagioclase (Figure 5D). The hornblende, plagioclase and quartz define the regional foliation (S2) with epidote mainly occurring in cross-cutting veinlets.

In a poorly foliated sample the hornblende laths are typically nematoblastic and display a 120° triple junction when in contact with quartz and plagioclase along grain

Figure 9 Elemental map for sample SB06 showing the distribution of Na, Mg, Al, Fe, Ca, Mn found in the sample.

Figure 10 Elemental map for sample SB12 showing the distribution of Na, Mg, Al, Fe, Ca, Mn found in the sample.
boundaries. In some samples, medium- to coarse-grained pleochroic poikiloblastic hornblende grains have inclusions (0.5 to 1 mm) of quartz, plagioclase and an opaque phase.

The biotite amphibolite is essentially made up of hornblende + biotite + plagioclase (partly altered to sericite) + opaque (ilmenite) (M2) ± secondary epidote. This lithotype shows a nematoblastic texture in which the biotite occurs as laths with a preferred orientation paralleling the regional foliation that is defined by the hornblende.

It is strongly pleochroic and reddish-brown. The biotite is commonly wrapped around flattened quartz grains (Figure 5E), and in places, it replaced hornblende.

The mineralogically simpler amphibolite lithotype consists of hornblende + plagioclase (partly altered to sericite) + quartz ± opaque phase (ilmenite) (M2) ± epidote ± actinolite ± biotite (M3) and has a nematoblastic texture. The hornblende grains display perfect cleavage although, in many places, this is obscured due to their poikiloblastic appearance. Some hornblende grains are zoned with typically pale-green rims and blue-green cores. This could be a result of chemical zonation towards a more actinolitic rim and may be the result of retrograde metamorphism. The plagioclase grains were partly sericitised and some grains display undulose extinction, deformation twins (Figure 5F) and incomplete wedge-like twins.

Table 4. Representative temperatures derived from hornblende-plagioclase pairs for garnet-free amphibolites at different pressure conditions.

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Pressure (kbar)</th>
<th>Hbl-Pl pairs</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB01</td>
<td>4.5</td>
<td>772-834</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>757-818</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>750-790</td>
<td></td>
</tr>
<tr>
<td>SB17</td>
<td>4.5</td>
<td>736-786</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>704-778</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>697-763</td>
<td></td>
</tr>
<tr>
<td>SB24</td>
<td>4.5</td>
<td>762-838</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>724-793</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>717-787</td>
<td></td>
</tr>
<tr>
<td>SB31</td>
<td>4.5</td>
<td>711-759</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>697-744</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>693-789</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Representative temperature conditions for the garnetiferous amphibolites using hornblende-plagioclase and hornblende-garnet pairs.

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Pressure (kbar)</th>
<th>Hbl-Pl pairs</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB06</td>
<td>4.5</td>
<td>840-859</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>754-840</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>744-825</td>
<td></td>
</tr>
</tbody>
</table>

Figure 11. (A) Ti vs Al in amphibole (cations per 23 oxygens) illustrating the pressure conditions of metamorphism for the various samples with the bulk plotting in the medium pressure field. Straight line is that suggested by Hynes (1982) for distinction between low- and medium-pressure metamorphic terranes. (B) Ti vs Si (cations per 23 oxygens) indicating slightly higher temperatures for garnet amphibolite (SB12) with the bulk of the analysed samples plotting over a similar temperature range.
A total of 230 electron microprobe analyses were conducted on amphibole, plagioclase and garnet grains. Representative mineral analyses for each sample are given in Tables 2 and 3.

Amphibole makes up between 20 and 60 volume % and it shows little compositional variation. Following the nomenclature of Leake et al. (1987) and assuming all Fe as Fe$^{2+}$, the amphibole compositions (Table 2) correspond to magnesionhornblende to tschermakite (Figure 6).

Two chemically distinct varieties of plagioclase (modal proportion: 10 to 40 volume %) were identified (Figure 7). The first group ranges in composition from An$_{80}$ to An$_{90}$ and the second group has a composition of An$_{15}$ to An$_{50}$. The orthoclase contents are less than 2%.

The plagioclase in the garnetiferous amphibolite (SB06 and SB12) plot in the bytownite field (An$_{80}$ to An$_{90}$) and generally occurs as rims around garnet. However, some grains are more sodic with An$_{15-40}$. The anorthite-rich variety represents peak metamorphic plagioclase, whereas the more sodic variety is interpreted as a retrograde phase.

Garnet makes up between 10 and 45 volume % of the amphibolites and is almandine-rich (X$_{Alm}$ = 57 to 66%, X$_{Grs}$ = 13 to 28%, X$_{Pyr}$ = 12 to 19% and X$_{Sp}$ = 1 to 7%). Garnet profiles (Figure 8A and B) for samples SB06 and SB12 show slight zonation regardless of size and orientation of the analysed grain. In sample SB06 the X$_{Alm}$ and X$_{Pyr}$ proportions decrease slightly from rim to core with a corresponding increase in X$_{Grs}$. However, in SB12 an opposite trend is observed with a decrease...
Further evidence for the weakly zoned nature of the garnet grains is observed in elemental maps (Figure 9) produced using a scanning electron microscope. Mapping was carried out to highlight the distribution of the following elements: Mg, Na, Al and Fe within the matrix and garnet grains. The garnet map also shows that there are high concentrations of Al, Na and Si concentrated around the garnet. This is attributed to the corona of quartz and feldspar as observed both at outcrop and thin-section scale. The matrix mainly shows a high concentration of Mg, which is hosted within the dominant hornblende that characterises these rocks.

The garnet grains in sample SB12 are highly fractured and anhedral (Figure 10). They are almandine-rich (Figure 10) and contain abundant inclusions of hornblende, plagioclase and ilmenite. The fractures in the garnet grains are filled largely by Na-rich plagioclase.

Geothermobarometry

Apart from relics of diopside, the preserved equilibrium mineral assemblage, defining S2, in the pre-tectonic mafic rocks, consists of hornblende + plagioclase + quartz ± garnet ± biotite ± ilmenite. Hynes (1982) pointed out that at low pressure amphiboles have higher Ti contents than those formed at medium pressure at the same Al level. The amphiboles from this study plot across the Ti vs. Al diagram with a greater cluster in the medium pressure field (Figure 11A). Sample SB06 plots in the low-pressure field, which could be a result of partial diffusional resetting due to decompression melting, indicated by decompression coronas around garnet. The amphibole grains in the garnet amphibolite have high Ti concentrations, which correspond to upper amphibolite-facies conditions (Figure 11B; Shido and Miyashiro, 1959; Binns, 1965; Bard, 1970; Raase, 1974; El-Naby et al., 2000).

The peak metamorphic conditions (Mregional/M2) were constrained further by means of hornblende-plagioclase (Holland and Blundy, 1994), garnet-hornblende (Graham and Powell, 1984) and plagioclase-hornblende (Plyusnina, 1982) geothermometry as well as garnet-hornblende-plagioclase-quartz geobarometry (Hammarstromn and Zen, 1980; Hollister et al., 1987; Johnson and Rutherford, 1989; Kohn and Spear, 1990).

Table 6

Representative pressure calculated for the analyzed samples using amphibole-garnet-plagioclase barometers of Hammarstrom and Zen (1980), Hollister et al. (1980) and Johnson and Rutherford (1989).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SB01</td>
<td>5.5-6.4</td>
<td>5.8-6.1</td>
<td>4.9-6.1</td>
</tr>
<tr>
<td>SB06</td>
<td>4.7-6.7</td>
<td>4.9-6.5</td>
<td>5.2-7.0</td>
</tr>
<tr>
<td>SB12</td>
<td>6.3-8.6</td>
<td>6.8-8.0</td>
<td>5.7-7.0</td>
</tr>
<tr>
<td>SB17</td>
<td>5.7-6.0</td>
<td>6.4-7.0</td>
<td>5.1-5.8</td>
</tr>
<tr>
<td>SB24</td>
<td>5.4-5.8</td>
<td>5.7-6.8</td>
<td>4.9-5.7</td>
</tr>
<tr>
<td>SB31</td>
<td>4.9-5.2</td>
<td>4.1-5.6</td>
<td>4.4-4.8</td>
</tr>
</tbody>
</table>

Figure 14

Suggested pressure-temperature-time path for the amphibolites from the Tugela Terrane. Al2SiO5 equilibria, granitic and basaltic solidus curves shown for reference.
The edenite-tremolite geothermometer of Holland and Blundy (1994) was applied to all samples because of the presence of small amounts of quartz in the equilibrium assemblage. This geothermometer is suitable for a temperature range of 500° to 1100°C, plagioclase compositions of An<92, and <7.8 Si atoms per amphibole formula unit. These conditions are fulfilled in the case of the samples studied. In each sample, P-T estimates were made for several microdomains in which the relevant phases appear in textural equilibrium (Figure 11A), a temperature range between 693 and 770°C was calculated (Table 4) for the garnet-free amphibolites. Higher temperatures (750 to 850°C) were obtained from the hornblende-plagioclase geothermometer for garnetiferous amphibolite, but lower temperatures from garnet-hornblende geothermometry (Graham and Powell, 1984) (Table 5). Using the experimental hornblende-plagioclase geothermobarometer of Pliyunina (1982; Figure 13), the garnet-free epidote-bearing samples plot between 550 and 650°C with corresponding pressures of between 3.5 and 6 kbar.

Geobarometric calculations were limited by the lack of suitable pairs. The Al-in amphibole geobarometer (Hammarstrom and Zen, 1980; Hollister et al., 1987; Johnson and Rutherford, 1989) yielded pressures between 4.1 and 6.7 kbar (Table 6). The amphibole-garnet-plagioclase barometer (Kohn and Spear, 1990) gave a pressure of 4.7 at an assumed temperature of 550°C which is in good agreement with the above calculated P-T conditions using the method of Pliyunina (1982).

For the garnet-bearing samples, the temperatures calculated from hornblende-plagioclase geothermometry are at least 744°C, which is at variance with those obtained from the garnet-hornblende thermometry (see Table 5). This discrepancy between the two methods could be a result of partial diffusion resetting of plagioclase during decompression melting as a result of uplift (see reaction 2), implying that the plagioclase compositions represent a younger, retrograde overprint and are not part of the equilibrium mineral assemblage.

Combining the results of the various geothermobarometers, an overall temperature range for M2 conditions of between 693 and 750°C and a pressure range of 4.5 to 6 kbar is suggested. However, it must be noted that a lower temperature range of between 550 to 650°C and similar pressures have also been calculated combining the data produced using the methods of Pliyunina (1982) and Kohn and Spear (1990). These lower temperatures could represent possible M2 conditions, but textural disequilibrium between chlorite, epidote and earlier formed minerals does not permit the use of geothermobarometry to quantify M2 P-T conditions in detail.

P-T Path

This study and previous workers (Bisnath, 2000; Johnston et al., 2003) have documented three metamorphic stages (M1-M2-M3) within the rocks of the Tugela Terrane. Evidence for the M1 event is preserved in thin section as an internal fabric (S1) of inclusion trails in garnet porphyroblasts (Bisnath, 2000; Johnston et al., 2003). Johnston et al. (2003) documented that the clinopyroxene-bearing amphibolites are, at the least, transitional between upper amphibolite- and granulite-facies metamorphism (Harley, 1989; Spear and Cheney, 1989), requiring minimum temperatures of 700°C. At low pressures (~2 kbar) clinopyroxene amphibolites develop at temperatures about 30°C lower than two-pyroxene granulites. Thus the lack of orthopyroxene in the metabasites and banded grey gneisses may indicate that temperatures were below the orthopyroxene stability field. However, this is inconsistent with migmatisation of mafic igneous rocks, which requires temperatures of approximately 1000°C (Harley, 1989; Yardley, 1991). Alternatively, the lack of orthopyroxene may be indicative of high pressure granulite-facies metamorphism. At pressures above 9 kbars, orthopyroxene breaks down, giving rise to garnet (with an elevated grossular component), diopside and quartz (Yardley, 1991), consistent with the S2 mineral paragenesis. High-pressure granulite-facies metamorphism is consistent with the granoblastic texture of the diopside amphibolites, the brown colour of the hornblende grains, the presence of perthitic potassium feldspar porphyroblasts, the replacement of biotite by potassium feldspar, and the migmatisation of the mafic igneous rocks, all of which are commonly associated with granulite facies metamorphism (Yardley, 1991). Therefore it is suggested, that the presence of relic clinopyroxene represents the remnants of M1 metamorphism and not M2.

The second metamorphic stage (M2) was a retrogressive event leaving behind only hints of an earlier granulate-facies event. M2 gave rise to the dominant minerals and foliation (S2) in the rocks of the study area. The new geothermobarometric data indicate that the P-T conditions for M2 were between 693 and 750°C with a pressure in the range of 4.5 to 6 kbar (Figure 14).

The final metamorphic stage observed within the analysed samples (M3) is also interpreted as a retrogressive event associated with the D3 event during exhumation Retrograde metamorphism involved formation of biotite after hornblende, the replacement of hornblende by epidote and the sericitisation of plagioclase. In some areas, actinolite replaced hornblende along the grain margins. The calculated T-P conditions for M3 are 550 to 600°C and 4 to 6 kbar.

No major differences were noted in the tectono-thermal regimes in which the rock types making up the Tugela Terrane were deformed. This is in agreement with a recent model by McCourt et al. (2006) in which the present components of the Tugela Terrane were
assembled during an accretionary event (D3) between 1208 ± 5 Ma and 1161 ± 9 Ma. Syn- to post-accretion uplift (D3) resulted in emplacement of the accreted units, as a single package, onto the margin of the Kaapvaal Craton. This uplift took place between 1155 ± 6 Ma and 1135 ± 9 Ma (McCourt et al., 2006); was accommodated by northeast-vergent folds and thrusts and produced the present structural architecture of the Tugela Terrane. The accretion of the Mzumbe-Margate Terranes onto the Tugela-Kaapvaal margin occurred at ~1.08 Ga but this event is not reflected in the P-T history of the rocks in the Tugela Terrane.

Acknowledgments
A. Walliser and M. Atanasova are thanked for their assistance with electron microprobe and scanning electron microscope analyses at the Council for Geoscience, Pretoria. S. Pillay is thanked for petrographic section preparation at the University of KwaZulu-Natal. The Council for Geoscience is thanked for financial assistance, funding SBNB Honours programme at the UKZN and giving the authors permission to publish their new findings. An earlier version of the manuscript benefitted from constructive reviews by Stephen Johnston, Bob Thomas and Geoff Grantham for which the authors are grateful.

References

Editorial handling: L.D. Ashwal